Subclasses of Circular-Arc Bigraphs: Helly, Normal and Proper
نویسندگان
چکیده
منابع مشابه
Normal Helly circular-arc graphs and its subclasses
A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal He...
متن کاملProper Helly Circular-Arc Graphs
A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...
متن کاملClique graphs of Helly circular arc graphs
Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove th...
متن کاملSelf-clique Helly circular-arc graphs
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In th...
متن کاملEssential obstacles to Helly circular-arc graphs
A Helly circular-arc graph is the intersection graph of a set of arcs on a circle having the Helly property. We introduce essential obstacles, which are a refinement of the notion of obstacles, and prove that essential obstacles are precisely the minimal forbidden induced circular-arc subgraphs for the class of Helly circular-arc graphs. We show that it is possible to find in linear time, in an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Theoretical Computer Science
سال: 2019
ISSN: 1571-0661
DOI: 10.1016/j.entcs.2019.08.044